Источник отрицательного напряжения

Содержание

Может ли напряжение на узле быть отрицательным?

В схеме узел — это точка между двумя или более элементами схемы, а узловое напряжение — это разность электрических потенциалов между двумя узлами схемы.

Напряжение узла может быть положительным или отрицательным, поскольку это относительная величина.. Один узел схемы можно рассматривать как опорный узел, и относительно этого узла можно измерить напряжение другого узла. Обычно опорным напряжением является заземляющий узел, поэтому значение другого узла зависит от направления текущей ориентации и т. Д. По отношению к опорному узлу. Напряжение измерительного узла может быть ниже опорного напряжения.

Для чего используется отрицательное напряжение

В некоторых схемах используется отрицательное напряжение, например, транзистор, Телеком, двухтактный усилитель, схема силового драйвера и т.д.

Использование отрицательного напряжения:

 Операционному усилителю (OpAmp) требуется как положительное, так и отрицательное напряжение для правильной работы и усиления. Для смещения транзистора необходимо отрицательное напряжение. В электросвязи линии прокладываются под землей в присутствии влаги и других внешних материалов, которые могут вызвать коррозию провода, обычно сделанного из меди. Когда через провод подается отрицательное напряжение, это сводит к минимуму коррозию.

Отрицательное значение — ток — Большая Энциклопедия Нефти и Газа, статья, страница 3

Отрицательное значение — ток

В результате решения составленных уравнений определяемые величины могут получиться отрицательными. Отрицательное значение тока указывает на то, что фактическое направление тока на данном участке цепи обратно принятому.  

Отрицательное значение тока указывает i:; то, что фактическое направление тока на данном участке цепи обратно пригм-тому.  

В результате решения составленных уравнений определяемые величины могут получиться отрицательными. Отрицательное значение тока указывает на то, что фактическое направление тока на данном участке цепи обратно принятому.  

В дальнейшем ( при ttl) как энергия электрического поля емкости Wc, так и запасенная к моменту t t магнитная энергия индуктивности W, расходуется на покрытие тепловых потерь в сопротивлении R. Отрицательное значение тока свидетельствует о противоположном направлении тока разряда относительно опорного направления.  

В результате решения составленных уравнений определяемые величины могут получиться отрицательными. Отрицательное значение тока указывает на то, что фактическое направление тока на данном участке цепи обратно принятому.  

В связи с этим нужно провести анализ и получить представление о работе термоэлектрической установки во всем диапазоне возможных электрических режимов. С этой целью может быть рассмотрена единая нагрузочная характеристика ТЭУ в области как положительных, так и отрицательных значений тока. За основу может быть принят режим генератора, когда ток в ТЭУ возникает без использования внешнего источника. Именно для этого режима принимается, что ток имеет положительную величину.  

В отличие от симметричной характеристики простейшего усилителя ( см. рис. 129) характеристика управления магнитного усилителя с обратной связью ( рис. 132) несимметрична. В области положительных значений тока управления рабочий ток резко возрастает и так же резко уменьшается в области малых отрицательных значений тока управления.  

Пока не будет достигнута индукция насыщения Bs, магнитная проницаемость материала ( на участке В0 — 3 — /) будет высокой, индуктивное сопротивление хму большим, а ток нагрузки — малым. В этом полупериоде ток нагрузки будет принимать максимальные мгновенные значения с того момента, когда индукция станет равна индукции насыщения Bs. Чем больше отрицательный ток управления, тем ниже спускается по петле гистерезиса точка В0 и тем меньше среднее значение тока нагрузки за полупериод. При определенном отрицательном значении тока управления магнитный режим может оказаться таким, что индукция никогда не будет достигать величины индукции насыщения.  

Для однотипных транзисторов в равенстве ( 4 — 132) преобладает второе слагаемое. В схемах с более мощным вторым транзистором оба слагаемых могут быть сравнимыми. Температурная зависимость тока / кос подчиняется общим законам. Большие значения / кос позволяют работать как при положительных, так и при отрицательных значениях тока базы составного транзистора.  

Страницы:      1    2    3

Как получить отрицательное напряжение. » Хабстаб

Если меня спросят на каком этаже я живу, то не задумываясь скажу, что на пятом и мой ответ понятен каждому, всё дело в том, что мы привыкли отсчитывать этажи от земли. А для соседа с 10 этажа, если он свой этаж примет за точку отсчёта, я живу на -5 этаже. Так же и в электронике, измеряемое напряжение зависит от точки отсчёта, от точки которую мы приняли за ноль. Обычно такую точку, относительно которой ведётся отсчёт, называют землёй и тогда становится понятно, что раз напряжение — величина относительная, то может быть равна как 5 так и -5 вольтам, всё зависит от точки отсчёта.

Давайте рассмотрим схемы, изображённые ниже.

Источник отрицательного напряжения

Но что интересно,нельзя найти устройство, которое питается отрицательным напряжением, а услышать про отрицательное напряжение можно лишь, когда речь заходит о двухполярном питании. Ну вот только с одним, чуть разобрались и снова, какие-то умные слова. На самом деле ничего хитрого в двухполярном питании нет. Если для работы электронного компонента необходимо положительное и отрицательное напряжение(средняя схема на картинке выше), то говорят, что ему необходимо двухполярное питание.

В каком случае двухполярное питание может пригодиться? Рассмотрим простой пример, если на один из входов ОУ, питающегося положительным напряжением, подать отрицательное напряжение, то ничего не произойдёт, он просто не знает про существование отрицательного напряжения и сделать с ним ничего не может.

Кто-то из читателей, может подумать: «Вон выше схема на резисторах, используешь её и получаешь двухполярное питание, чего тут дальше читать?» А нет, всё не так просто, у схемы на резисторах есть один недостаток — отсутствие стабилизации средней точки, то есть при разной нагрузке в плечах, будет смещаться напряжение общей точки, тогда при подключении разной нагрузки на выходе будет не 5 и -5 вольт, а например, 4 и -6 вольт. Поэтому схема на резисторах — не самый лучший вариант.

Популярные статьи  Как связать розу крючком — инструкции, схемы, фото идеи для начинающих

Чёт мы я отвлёкся от темы, и так мне надо было организовать двухполярное питание и вопрос возникал в том как получить -5 вольт с током до 20мА. Дабы не усложнять себе жизнь, использовал две последовательно включенные зарядки от телефона. Точку в которой соединялся плюс одной зарядки с минусом другой принял за точку отсчёта(землю), тогда зарядка, у которой остался не подключённым плюсовой вывод, использовалась для получения 5 вольт, та у которой не подключён минусовой вывод для получения -5 вольт.

Прошло немного времени и стало понятно, что таскать две зарядки для одного устройства неудобно и хорошо было найти более простой способ получить отрицательное напряжение. Вариантов было два: первый — это собрать на рассыпухе источник отрицательного напряжения, второй — купить готовую микросхему, которая бы из положительного напряжения сделала отрицательное. Немного поискав в интернете, нашёл LM828, которая при подаче на вход положительного напряжения, на выходе выдавала такое же только отрицательной полярности. Идея использовать такую микросхему, показалась мне очень заманчивой поэтому сразу сделал заказ на али. Когда микросхема пришла, вытравил маленькую платку и монтировал её на основную плату и теперь для пользования устройством нужна только одна зарядка. Хотелось бы отметить, что номинал конденсаторов в обвязке микросхемы по даташиту равен 10uF, но при увеличении нагрузки микросхема начала пищать, поэтому увеличил их значение до 47uF.

LM828 покупал тут.

Телевидение

Известно, что выходной трансформатор строчной развертки (ТВС) является одним из напряженных узлов в телевизоре (ТВ). Как показывает эволюция развития схемотехники этого узла, с переходом от ламповых ТВ к цветным, в связи с увеличением мощности потребления от источника высокого напряжения (ток потребления черно-белого кинескопа с диагональю 61 см по второму аноду порядка 350 мкА, а цветного — уже 1 мА!), конструкторы ТВ постоянно искали пути повышения его надежности.

Схемотехнические решения получения высокого напряжения для питания второго анода кинескопа, которые использовались во всех моделях ламповых ТВ, имели место лишь в первых модификациях УЛПЦТ, а затем вместо повышающей обмотки ТВС (практически равной по числу витков анодной ) стали применять УН, которые по своей электрической прочности, а значит, и надежности значительно превышали аналогичные параметры намоточного узла.

Решение для создания отрицательного напряжения (-5 В)

Выходная мощность 7660 и MAX232 ограничена.осциллографОчень сложно принести быстродействующий операционный усилитель, поэтому Вэй Кун также должен расширить ток, подключив 4 штуки параллельно.

Первая версия — это 7660 две штуки параллельно.

Использовать обычныйDC/DCЧип может генерировать отрицательное напряжение, а точность напряжения такая же, как и для положительного напряжения, а также очень сильная способность вождения, которая может достигать более 300 мА.

ОбщееИмпульсный источник питанияМикросхема может генерировать отрицательное напряжение, невозможно использовать выход ШИМ от импульсного источника питания, чтобы подтолкнуть зарядный насос, а также он может генерировать больший ток, а стоимость также очень низкая. Я не знаю, сколько требуется пульсаций. После того, как зарядный насос отфильтрован LC, пульсации довольно малы из. 7660 — это зарядный насос, поэтому ток очень мал.

Вся конструкция осциллографаЦифровая сила+ 5В и + 5В аналогового источника питания подаются отдельно, но что делать с цифровым заземлением и аналоговым заземлением?

Цифровое заземление и аналоговое заземление должны быть соединены вместе, иначе схема не будет работать.

Ток возврата на землю цифровой части не может протекать через аналоговую часть, и две земли должны быть соединены вместе в стабильной контрольной точке заземления.

Может ли напряжение остановки быть отрицательным?

В эксперименте по фотоэлектрическому эффекту анод является материалом мишени. Анод подключается к положительному выводу источника напряжения, когда он подвергается воздействию монохроматической и электромагнитной волны, что приводит к протеканию тока через контур, который называется фототоком.

Когда анод соединен с отрицательной клеммой источника напряжения, по мере увеличения напряжения фототок гаснет. Напряжение, при котором фототок перестает протекать по цепи, называется напряжением остановки. В ходе этого эксперимента мы узнали, что напряжение останова имеет отрицательное значение.

Как вы проверяете регулятор отрицательного напряжения?

Выходное и входное напряжение регулятора можно проверить для тестирования регулятора отрицательного напряжения.

Входное напряжение отрицательного регулятора можно измерить относительно земли; входное напряжение регулятора проверяется, чтобы регулятор мог нормально работать с достаточным входным напряжением. Входное напряжение должно быть больше регулируемого выходного напряжения по величине. Диапазон выходного напряжения различается разными регуляторами напряжения. Что касается регулятора отрицательного напряжения, диапазон выходного напряжения будет в отрицательных значениях напряжения. При тестировании регулятора отрицательного напряжения убедитесь, что выходное напряжение находится в диапазоне отрицательного напряжения. Выходное напряжение должно быть около номинального выходного напряжения. Если выходное напряжение не соответствует номинальному, регулятор может быть неисправен.

Безопасная эксплуатация LM317

Стоит помнить об эксплуатационных характеристиках радиокомпонента и не использовать его в критических условиях. Мощность рассеивания по официальной информации – 20 Вт, а разница входного и выходного напряжений не должна превышать 40 В. Во время пайки температура должна не превышать 260 C. Использовать можно при температуре от 0C до 125C, а хранить от -65C до 150C. Все это официально заявленные характеристики, в реальности они могут расходиться от экземпляра к экземпляру и быть заниженными.

Не стоит использовать элемент при максимальных и минимальных обозначенных значениях. При такой эксплуатации уровень стабильности и надежности значительно упадет. А также крайне желательно использовать радиатор для отвода тепла, так как иначе заявленные характеристики могут не совпадать с реальными.

Умножители напряжения

Источник отрицательного напряжения

Васильев Дмитрий Петрович

Профессор электротехники СПбГПУ

Задать вопрос

Умножители напряжения преобразуют переменное напряжение в постоянное, причем выходное постоянное напряжение значительно превышает амплитуду входного переменного напряжения. Различают симметричные и несимметричные умножители напряжения.

Рассмотрим схему симметричного удвоителя напряжения (схему Латура) (рис. 2.88).

Источник отрицательного напряжения

Диоды включаются в разные полупериоды входного напряжения. В те полупериоды, когда uвх< 0, включается диод D1 и заряжается конденсатор С1 в другие полупериоды (uвх< 0), включается диод D2 и заряжается конденсатор С2.

Напряжения на конденсаторах при холостом ходе приближаются к амплитудному значению Uвx.m входного напряжения, поэтому uвых= 2Uвx.m Схема несимметричного удвоителя напряжения имеет вид, показанный на рис. 2.89.

Источник отрицательного напряжения

Источник отрицательного напряжения

Абрамян Евгений Павлович

Доцент кафедры электротехники СПбГПУ

Задать вопрос

В отрицательные полупериоды входного напряжения (uвх 0) через диод D2 под действием суммы напряжений uвхи uc1, действующих согласно, заряжается конденсатор С2 до удвоенного амплитудного значения входного напряжения.

Популярные статьи  Скамейка на дачу из блоков!

Аналогичным образом строят утроители (рис. 2.90, а), учетверители (рис. 2.90, б) и другие умножители напряжения.

Источник отрицательного напряжения

В этих схемах напряжение на конденсаторе С1 равно амплитудному значению входного напряжения, а на всех остальных конденсаторах — удвоенному амплитудному значению входного напряжения. Входное напряжение на такие умножители поступает обычно с вторичной обмотки трансформатора, и тогда такое устройство называют выпрямителем с умножением напряжения. Обычно они применяются в высоковольтных выпрямителях, потребляющих небольшой ток (единицы миллиампер), например для питания кинескопов телевизоров.

Управляемые выпрямители позволяют регулировать выходное напряжение. Они, как правило, построены на основе однооперационных (обычных, незапираемых) тиристоров.

Может ли среднеквадратичное значение напряжения быть отрицательным?

RMS означает среднеквадратичное значение маршрута. Среднеквадратичное значение напряжения может быть получено путем извлечения квадратного корня из среднего значения квадрата мгновенного напряжения за интервал времени.

Результат извлечения квадратного корня может быть отрицательным или положительным. Допустим, амплитуда напряжения принята за среднеквадратичное значение, тогда условно. В этом случае среднеквадратичное значение напряжения будет положительным, только если амплитуда и фаза напряжения взяты для получения среднеквадратичного напряжения, тогда это может быть комплексное отрицательное или положительное значение.

Как сравнить напряжение вручную?

Чтобы понять, зачем нужно сравнение двух разных напряжений, представьте следующую ситуацию: у вас есть две батареи AA с номинальным напряжением 1,5 В. Вы знаете, что одна из них разряжена, но не знаете, какая именно. В ваше устройство, например будильник, нужно поставить менее разряженную, то есть батапейку с более высоким напряжением.

Источник отрицательного напряженияКак сравнить напряжение двух батареек АА

Какая будет ваша первая мысль? Да, правильно, измерить напряжение каждой батареи с помощью мультиметра, и просто сравнить два числа друг с другом. Предположим, что результаты наших измерений следующие: 1,113 В и 1,521 В. Выбор батарейки в будильник очевиден.

Источник отрицательного напряженияСамый простой способ сравнить две батареи — измерить их напряжение мультиметром

Если у вас есть батарейки типа AA, то можете сами проверить их напряжение. Если батареи новые, то их напряжения должны быть одинаковыми (могут быть некоторые различия). Для сравнения вы можете использовать одну старую батареюку, взятую, например, из пульта дистанционного управления.

Однако, у такого метода измерения есть небольшой недостаток — для сравнения напряжения батареи нужно «целых» два измерения. Но эту операцию можно упростить до одного измерения! Достаточно совместить минусы обоих аккумуляторов, и затем прижать щупы мультиметра к их плюсам. Такое измерение покажет нам разницу с предыдущими результатами — мультиметр покажет так называемое дифференциальное напряжение.

Напряжение — это разность потенциалов между двумя точками, поэтому такое подключение, также является правильным — подключение черного щупа к плюсу батареи безопасно.
Источник отрицательного напряжения Источник отрицательного напряжения
Схема измерения напряжения Дифференциальное напряжение двух батареек АА

Принцип работы компаратора (для любознательных)

Иногда, юные электронщики используют юмористический термин «магический треугольник», т.к. они еще не знакомы с внутренней структурой схемы. Чтобы полностью понять, как работает компаратор, нужно хорошо знать транзисторы — внутри компаратора нет никакого волшебства.

Ниже представлена ​​простейшая принципиальная схема компаратора. Схема ужасная, но она будет работать. Следующая информация должна рассматриваться чисто из любопытства — мы не будем использовать этот тип компараторов.

Построение простого компаратора на транзисторах

Компараторы, продаваемые как интегральные схемы, содержат дюжину и более транзисторов, поэтому они не удобны при ручном анализе работы.

Транзисторы Т1 и Т2 образуют так называемую дифференциальную схему, которая находится на входе каждого компаратора. Ее преимущество в том, что она позволяет изучать дифференциальное напряжение, ведь здесь важна только разница напряжений между их базами.

Если напряжение на Т1 ниже, чем на Т2, первый транзистор открывается, а второй забивается. Это связано со свойствами транзистора PNP — для его открытия необходим базовый потенциал ниже, чем у эмиттера. База T1 будет снижать потенциал эмиттеров ниже, чем база T2, вызывая засорение T2. Весь ток от резистора будет проходить через коллектор T1.

Транзисторы Т1 и Т2 постоянно конкурируют друг с другом за ток от резистора R1. Тот, кто побеждает (то есть начинает проводить ток от эмиттера к коллектору), устанавливает напряжение эмиттер-база около 0,7 В. Если его «противник» не проводит ток, его напряжение эмиттер-база ниже.

Если в ситуации, показанной ниже, транзистор T2 с базовым потенциалом 2,5 В должен был проводить ток, то его потенциал эмиттера был бы 3,2 В или 0,7 В. Однако тогда, напряжение эмиттер-база транзистора T1, поскольку их эмиттеры соединены, будет до 3,2 В — 2 В = 1,2 В, поэтому он будет проводить гораздо больший ток.

Простой компаратор — текущий путь в первой ситуации

В такой схеме проводящим может быть только один транзистор. Ситуация, в которой ток протекает через оба транзистора одновременно, невозможна.

В схеме напряжений, которую мы только что предположили, Т1 должен проводить ток. Потенциал эмиттера будет 2,7 В. Тогда напряжение эмиттер-база в транзисторе Т2 будет всего 2,7 В — 2,5 В = 0,2 В. Следовательно, Т2 останется забитым. Весь ток от R1 будет течь на землю через коллектор T1. Ток не будет течь в базу T3, и этот транзистор также будет забит.

Теперь поменяем местами провода, подающие напряжение на входы компаратора. Дифференциальное напряжение по-прежнему составляет 0,5 В, но его знак изменился. Теперь потенциал базы Т2 составляет 2 В, а Т1 — 2,5 В. Теперь можно сделать вывод, что Т2 придется открывать. Его напряжение эмиттер-база будет 0,7 В, а Т1 — 0,2 В, поэтому он останется забитым.

Простой компаратор — путь тока во второй ситуации

Весь ток от резистора R1 будет протекать через эмиттер T2 на базу T3. Этот транзистор, пока забитый, но сможет открыться и через его коллектор сможет протекать ток, например, от дополнительного резистора (подробнее об этой теме чуть позже), к земле системы. Если ток коллектора достаточно низкий, транзистор может насыщаться.

Таким образом, эта простая схема действует как реальный компаратор. Когда потенциал входа, отмеченного знаком «+», выше, чем «-», состояние выхода высокое (выходной транзистор забит). Если входной потенциал «-» выше, чем «+», выход будет закорочен на массу (выходной транзистор открыт).

Генерация отрицательного напряжениясхемаПринцип графика

В электронных схемах нам часто требуется использовать отрицательное напряжение. Например, когда мы используем операционные усилители, нам часто необходимо установить для них отрицательное напряжение. Ниже приведен простой пример положительного напряжения 5 В на отрицательное напряжение 5 В, чтобы объяснить его схему.

Популярные статьи  Карманный справочник по электронике и электротехнике

Обычно, когда мне нужно использовать отрицательное напряжение, я обычно выбираю специальные микросхемы, генерирующие отрицательное напряжение, но эти микросхемы более дорогие, например ICL7600, LT1054 и т. Д. Ой, чуть не забыл про MC34063. Этот чип используется чаще всего.Что касается схемы генерации отрицательного напряжения 34063, я не буду здесь упоминать в даташите. Пожалуйста, смотрите нас нижеMCUДва типа контуров создания отрицательного давления, обычно используемых в электронных схемах.

Многие современные однокристальные микрокомпьютеры оснащены выходом PWM. Когда мы используем однокристальный микрокомпьютер, PWM часто не используется. Это хороший выбор для создания отрицательного давления.

Вышеупомянутая схема представляет собой простейшую схему генерации отрицательного напряжения. Он использует наименьшее количество оригиналов, нам нужно только предоставить ему прямоугольную волну около 1 кГц, что довольно просто. Здесь следует отметить, что генерирующая способность этой схемы очень мала, и падение напряжения после добавления нагрузки также относительно велико.

Следующая схема была произведена по указанным выше причинам:

Отрицательное напряжение от сети переменного тока

Получение отрицательного напряжения от источника питания переменного тока – очень простая задача, здесь мы используем следующую схему для этого:

Источник отрицательного напряжения

Данная схема собрана на трансформаторе, ограничительном диоде и стабилизаторе отрицательного напряжения. Прежде всего, мы используем трансформатор 24 В, чтобы получить питание 24 В переменного тока. Диод в режиме обратного смещения действует как положительный ограничитель. Для дальнейшего регулирования напряжения мы используем микросхему стабилизатора отрицательного напряжения 7915, которая из -24 В переменного тока обеспечит нам -15 В на выходе.

Транзисторная схема генератора пилообразного напряжения с отрицательной обратной связью

Существует несколько разновидностей транзисторных генераторов пилообразного напряжения с отрицательной обратной связью, которые различаются типом ключевого элемента (транзисторный или диодный), а также тем, откуда снимают выходное напряжение, но наибольшее распространение получила схема изображённая ниже


Источник отрицательного напряжения


Источник отрицательного напряжения
Схема генератора пилообразного напряжения с отрицательной обратной связью и диаграммы входных и выходных напряжений.

Работает схема следующим образом. В исходном состоянии транзистор VT1 открыт и насыщен, напряжение смещения в цепи эмиттера VT1 (ЕСМ ≈ -0,1EK) поступает на базу транзистора VT2 и поддерживает его в закрытом состоянии. Конденсатор С1 при этом заряжен до напряжения

U_{C1} = E_{K}+E_{CM}-U_{nacVT1} \approx \/E_{K}+E_{CM}

а выходное напряжение при этом составляет

U_{BbIX} \approx \/E_{K}

При поступлении на ключевой элемент (база транзистора VT1) импульса отрицательной полярности (UBX > ЕСМ) транзистор VT1 закрывается, отключая тем самым базу транзистора VT2 от источника смещения и на базе VT2 (а также на выходе схемы) возникает положительный скачёк напряжения. Далее начинается разряд конденсатора С1 по цепи R2C1 и коллектор — эмиттер VT2 по экспоненциальному закону. Однако по мере уменьшения напряжения на С1 уменьшается его ток разряда, а напряжение база – эмиттер VT2 уменьшается, вследствие чего увеличивается коллекторный ток транзистора VT2 (а также ток разряда конденсатора С1). В результате этого напряжение на конденсаторе, а как следствие и выходное напряжение схемы уменьшается по линейному закону. Коэффициент нелинейности вычисляется из следующего выражения

\varepsilon = \frac {\xi * R2}{h_{21e VT2} * R_{K}}

тогда как коэффициент использования напряжения составляет

\xi = \frac{U_{BbIX}}{E_{K}} = 0,8…0,9

После окончание действия входного импульса транзистор VT1 открывается, а транзистор VT2 закрывается и конденсатор С1 заряжается, то есть происходит восстановление исходного состояния схемы.

Как видно из временных диаграмм напряжений на выходе данного типа генератора получается линейно-падающее напряжение, для изменения полярности выходных импульсов необходимо использовать транзисторы с другим типом проводимости.

В данном типе генераторов при переключении транзистора VT1 из насыщения в режим отсечки возникают скачки напряжения, обусловленные источником смещения Есм, что в некоторых случаях нежелательно. Для устранения данных скачков напряжения последовательно с конденсатором С1 включают резистор сопротивление, которого составляет 10…15 % от величины сопротивления R2.

Типовые схемы LM317

Как было указано, в LM317 используется при создании регулируемых и нерегулируемых блоков питания, однако, также может быть использован в качестве основы стабилизатора тока при создании светодиодных драйверов, которые поддерживают ток в цепи вне зависимости от входного напряжения. Только описанных в datasheet применений хватит на отдельную книгу, поэтому разберем несколько самых популярных схем на этом стабилизаторе.

Регулируемый блок питания (1.2-37В)

Все, что понадобится для его создания, это заменить R2 на переменный резистор, а также добавить трансформатор с диодным мостом на вход. При использовании стоит учитывать, что микросхема обладает опорным напряжением в 1.25В, поэтому оно и будет минимальным для данной схемы.

Источник отрицательного напряжения

Регулируемый блок питания (0-37В)

Если вам необходима полная регулировка с 0В, то производители схем предлагают подключить к схеме источник отрицательного напряжения на 10В.

Источник отрицательного напряжения

Вы можете намотать дополнительную катушку на трансформатор блока питания и подключить его выводы после диодного моста следующим образом:

Источник отрицательного напряжения

Таким образом, вы получите простейший лабораторный блок питания.

Светодиодный драйвер (Стабилизатор тока)

С помощью этой схемы вы можете запитывать достаточно мощные светодиоды и светодиодные ленты. Все, что нужно — это знать потребляемый ток и, исходя из него, подобрать сопротивление по формуле.

Источник отрицательного напряжения

В нем используется тот же принцип, что и в самой простой схеме, но вместо резистивного делителя установлен датчик тока. Чем больший ток потребляет нагрузка на выходе, тем большее падение напряжения будет наблюдаться на датчике. Оно отслеживается микросхемой, и она увеличивает или уменьшает напряжение для поддержания стабильного тока. Даже при коротком замыкании ток будет держаться на стабильном уровне, который был выставлен.

Зарядное устройство

Схема данного зарядного устройства взята из datasheet и имеет напряжение на выходе 6В с ограничением 0.6А. С помощью изменения сопротивления резисторов R1 и R2 возможно регулировать напряжение под ваши нужды, а при помощи резистора R3 – ток. Оно подойдет для питания аккумуляторов телефонов, инструментов и бытовой техники.

Источник отрицательного напряжения

Регулирование переменного напряжение

Так как два LM317 могут регулировать не только положительные, но и отрицательные колебания синусоиды, то с помощью них можно создать AC регулятор. Можно видеть, что схема довольно не сложная и не требует множества компонентов:

Источник отрицательного напряжения

Оцените статью
( Пока оценок нет )
Добавить комментарий