Преимущества использования микросхем
Появление микросхем произвело революцию в мире электроники (особенно, в микропроцессорной технике). Компьютеры на лампах, занимающие одну или несколько комнат, вспоминаются как исторический курьез. Но современный процессор содержит около 20 миллиардов транзисторов. Если принять площадь одного транзистора в дискретном исполнении хотя бы в 0,1 кв.см., то площадь, занимаемая процессором в целом, должна будет составлять не менее 200000 квадратных метров – около 2000 трехкомнатных квартир среднего размера.
Также надо предоставить площадь для памяти, звуковой платы, аудиоплаты, сетевого адаптера и других периферийных устройств. Стоимость монтажа такого количества дискретных элементов была бы колоссальной, а надежность работы недопустимо низкой. Поиск неисправности и ремонт заняли бы невероятно много времени. Очевидно, что эпоха персональных компьютеров без микросхем большой степени интеграции не наступила бы никогда. Также без современных технологий не были бы созданы устройства, требующие больших вычислительных мощностей – от бытовых до производственных или научных
Направление развития электроники предопределено на многие годы вперед. Это, в первую очередь, повышение степени интеграции элементов микросхем, что связано с непрерывным развитием технологий. Впереди предстоит качественный скачок, когда возможности микроэлектроники подойдут к пределу, но это вопрос достаточно далекого будущего.
Назначение, характеристики и аналоги транзистора 13001
Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142
Как работает микросхема TL431, схемы включения, описание характеристик и проверка на работоспособность
Что такое триггер, для чего он нужен, их классификация и принцип работы
Что такое светодиод, его принцип работы, виды и основные характеристики
Как устроен электрический аккумулятор, его принцип работы, виды, назначение и основные характеристики
Микросхема в радиоприемнике
Предлагаем испытать эту микросхему в высокочастотном тракте приемника, собранного, например, по схеме, приведенной на рис. 3. Входной контур магнитной антенны такого приемника образуют катушка L1 и конденсатор переменной емкости С1. Высокочастотный сигнал радиостанции, на волну которой контур настроен, через катушку связи L2 и разделительный конденсатор С2 поступает на вход (вывод 3) микросхемы Л1.
С выхода микросхемы (вывод 10, соединенный с выводом 9) усиленный сигнал подается через конденсатор С4 на детектор, диоды VI и V2 которого включены по схеме умножения напряжения, а выделенный им низкочастотный сигнал телефоны В1 преобразуют в звук. Приемник питается от батареи GB1, составленной из четырех элементов 332, 316 или пяти аккумуляторов Д-01.
Рис. 3. Схема приемника на микросхеме.
Во многих транзисторных приемниках усилитель высокочастотного тракта образуют транзисторы, а в этом — микросхема. Только в этом и заключается разница между ними.
Имея опыт предыдущих практикумов, ты, надеюсь, сможешь самостоятельно смонтировать иг наладить такой приемник и даже, если пожелаешь, дополнить его усилителем НЧгдля громкоговорящего радиоприема.
Элемент интегральной схемы
— часть интегральной схемы, реализующая функцию какого-либо электрорадиоэлемента (резистора, диода, транзистора и т. д.), причем эта часть выполнена нераздельно от других частей и не может быть выделена как самостоятельное изделие с точки зрения требований к испытаниям, приемке, поставке и эксплуатации.
Компонент интегральной схемы в отличие от элемента может быть выделен как самостоятельное изделие с указанной выше точки зрения.
По конструктивно-технологическим признакам интегральные схемы обычно разделяют на:
- полупроводниковые;
- гибридные;
- пленочные.
В полупроводниковой схеме все элементы и межэлементные соединения выполнены в объеме или на поверхности полупроводника. В таких схемах нет компонентов. Это наиболее распространенная разновидность интегральных схем.
Интегральную схему называют гибридной, если она содержит компоненты и (или) отдельные кристаллы полупроводника.
Абрамян Евгений Павлович
Доцент кафедры электротехники СПбГПУ
Задать вопрос
В пленочных интегральных схемах отдельные элементы и межэлементные соединения выполняются на поверхности диэлектрика (обычно используется керамика). При этом применяются различные технологии нанесения пленок из соответствующих материалов.
По функциональным признакам интегральные схемы подразделяют на аналоговые (операционные усилители, источники вторичного электропитания и др.) и цифровые (логические элементы, триггеры и т. п.).
Назначение микросхем
В интегральном исполнении в настоящее время выполняются самые разнообразные электронные узлы с различной степенью интеграции. Из них, как из кубиков, можно собирать различные электронные устройства. Так, схему радиоприемника можно реализовать различными способами. Начальный вариант – воспользоваться микросхемами-наборами транзисторов. Соединив их выводы, можно выполнить приёмное устройство. Следующий этап – использовать отдельные узлы в интегральном исполнении (каждое в своём корпусе):
- усилитель радиочастоты;
- гетеродин;
- смеситель;
- усилитель звуковой частоты.
Наконец, самый современный вариант – весь приемник в одной микросхеме, надо лишь добавить несколько внешних пассивных элементов. Очевидно, что с ростом степени интеграции построение схем упрощается. Даже полноценный компьютер в настоящее время можно реализовать на одной микросхеме. Его производительность пока будет ниже, чем у обычных вычислительных устройств, но с развитием технологий, возможно, и этот момент удастся победить.
Типы микросхем
В настоящее время выпускается огромное количество типов микросхем. Практически любой законченный электронный узел, стандартный или специализированный, выпускается в микроисполнении. Перечислить и разобрать все типы в рамках одного обзора не представляется возможным. Но в целом по функциональному назначению микросхемы можно разделить на три глобальные категории.
- Цифровые. Работают с дискретными сигналами. Цифровые уровни подаются на вход, с выхода также снимаются сигналы в цифровом виде. Этот класс устройств охватывает область от простых логических элементов до самых современных микропроцессоров. Сюда же относятся программируемые логические матрицы, устройства памяти и т.п.
- Аналоговые. Работают с сигналами, изменяющимися по непрерывному закону. Характерный пример такой микросхемы – усилитель звуковой частоты. Также к этому классу относят интегральные линейные стабилизаторы, генераторы сигналов, измерительные датчики и многое другое. К категории аналоговых принадлежат и наборы пассивных элементов (резисторов, RC-цепей и т.п.).
- Аналогово-цифровые (цифро-аналоговые). Эти микросхемы не только преобразовывают дискретные данные в непрерывные или в обратную сторону. Исходные или полученные сигналы в том же корпусе могут усиливаться, преобразовываться, модулироваться, декодироваться и т.п. Широко распространены аналого-цифровые датчики для связи измерительных цепей различных технологических процессов с вычислительными устройствами.
Также микросхемы делятся по типу производства:
- полупроводниковые – выполняются на одном кристалле полупроводника;
- пленочные – пассивные элементы создаются на основе толстых или тонких пленок;
- гибридные – к пассивным пленочным элементам «подсаживаются» полупроводниковые активные устройства (транзисторы и т.п.).
Но для применения микросхем эта классификация в большинстве случаев особой практической информации не дает.
Узкополосный НЧ фильтр
На рис. 4 приведен пример использования КМОП-микросхемы в качестве узкополосного НЧ фильтра [Fs 8/79-134]. Рабочая частота фильтра определяется как f=1/2nRC, где R и С — параметры резисторов и конденсаторов.
Рис. 4. Схема узкополосного НЧ фильтра на цифровой микросхеме К561ЛЕ5.
Добротностью фильтра (крутизной, остротой спада или подъема сигнала от частоты) можно управлять, перестраивая потенциометр R3.
На основе нескольких подобных фильтров, настроенных на разные частоты, может быть собрано устройство цветомузыкального сопровождения. Для этого достаточно на выходе фильтров включить простейшие усилители постоянного (или переменного) тока, нагруженные на светоизлучающие приборы (светодиоды, лампы накаливания).
Выделенные фильтрами низкочастотные сигналы можно также через согласующие каскады подавать на управляющие электроды тиристоров или симисторов. Питают тиристоры пульсирующим током, симисторы — переменным.
Что такое интегральная микросхема
Интегральная микросхема — это миниатюрный электронный блок, содержащий в общем корпусе транзисторы, диоды, резисторы и другие активные и пассивные-элементы, число которых может достигать нескольких десятков тысяч.
Одна микросхема может заменить целый блок радиоприемника, электронной вычислительной машины (ЭВМ) и электронного автомата. «Механизм» наручных электронных часов, например, — это всего лишь одна большей микросхема.
По своему функциональному назначению интегральные микросхемы делятся на две основные группы: аналоговые, или линейно-импульсные, и логические, или цифровые, микросхемы.
Аналоговые микросхемы предназначаются для усиления, генерирования и преобразования электрических колебаний разных частот, например, для приемников, усилителей, а логические — для использования в устройствах автоматики, в приборах с цифровым отсчетом времени, в ЭВМ.
Этот практикум посвящается знакомству с устройством, принципом работы и возможным применением самых простых аналоговых и логических интегральных микросхем.
Параметры цифровых микросхем
Прежде чем говорить о параметрах цифровых логических микросхем, необходимо сказать о том, что не все они учитываются и не всегда. Как это можете задать вопрос. Но тут очень просто, при разработке и моделировании цифровых устройств исходят из различных моделях логических микросхем. Всего таких модели три:
1. Логическая модель.
2. Модель с временными задержками.
3. Электрическая модель.
Для логической модели всё очень просто, здесь главным параметром является таблица истинности или описание алгоритма работы логического элемента. Примерно 20% всех схем строят на основе логической модели. В данной модели можно считать, что логический элемент срабатывает мгновенно.
Для модели с временными задержками необходимо учитывать то, что выходной сигнал изменяется с некоторой задержкой относительно входного сигнала. Данная модель позволяет разрабатывать около 80% всех устройств. Данная модель учитывает параметры задержки при переходе сигнала из единицы в нуль (tPHL) и переход сигнала из нуля в единицу (tPLH).
Для электрической модели логической микросхемы уже учитывают входной и выходной токи, а также входные и выходные напряжения. Данная модель говорит о том что уровни напряжений и токов устанавливаются не мгновенно, а с учётом переходных процессов внутри микросхем. С учётом этой модели разрабатываются все остальные цифровые устройства. Приведу некоторые из них:
входной ток нуля (IIL)и входной ток единицы (IIH);
входное напряжение нуля (UIL) и входное напряжение единицы (UIH);
выходной ток нуля (IOL) и выходной ток единицы (IOH);
выходное напряжение нуля (UOL) и выходное напряжение единицы (UOH).
Также для цифровых логических микросхем имеются общие электрические параметры: допустимое напряжение питания (UCC) и максимальный ток потребляемой микросхемой (ICC).
Аналоговые и цифровые микросхемы
Микросхемы выпускаются различных типов, они могут быть как аналоговыми так и цифровыми. Первые, как становится ясно из названия, работают с аналоговой формой сигнала, вторые же работают с цифровой формой сигнала. Аналоговый сигнал может принимать различную форму.
Аналоговый сигнал рисунок
Цифровой сигнал это последовательность единиц и нулей, высокого и низкого уровня сигналов. Высокий уровень обеспечивается подачей на вывод 5 вольт или напряжения близкого к этому, низкий уровень это отсутствие напряжения или 0 вольт.
Цифровя форма сигнала рисунок
Существуют также микросхемыАЦП (аналогово — цифровой преобразователь) и ЦАП (цифро — аналоговый преобразователь) которые осуществляет преобразование сигнала из аналогового в цифровой, и наоборот. Типичный пример АЦП используется в мультиметре, для преобразования измеряемых электрических величин и отображения их на экране мультиметра. На рисунке ниже АЦП — это черная капля, к которой со всех сторон подходят дорожки.
Фото АЦП мультиметра
Напряжение и ток – понятия
Для работы любого электронного компонента требуется наличие электрического тока. Он создается электрическим потенциалом, то есть «напором» частиц. Самого потенциала недостаточно для течения тока. Нужен также проводник, способный пропустить его через себя. Если проводника нет, то потенциал уходит в воздух, который очень хорошо препятствует распространению тока. Объекты, которые останавливают ток, называются диэлектриками, а позволяющие протекать через них – проводниками.
Помимо проводника, для течения тока нужна разность потенциалов, возникающая в цепи. Аналогию можно провести с водопроводной трубой. Если с обеих ее сторон подается одинаковый напор, то каким бы сильным он ни был, вода не будет течь. Разность потенциалов называется напряжением. Оно обозначается буквой «U» и измеряется в вольтах. Сила тока же обозначается «I» и измеряется в амперах.
Вам это будет интересно Особенности теплого света
Электроника на практике
ПЭ – это раздел электроники, на практике показывающий основные закономерности электричества. Именно в практической части изучается каждый элемент цепи отдельно и применяется на деле в совокупности с другими. С этим названием вышла и книга, в которой можно найти много интересных статей по электротехнике, сформулированных на общедоступном языке.
Материал включает в себя фотографии и опыты, к которым даны полные инструкции. Прочитав его, можно спокойно разбираться во всех электронных и радиотехнических терминах, овладеть пайкой и получить навыки дл чтения простых схем.
Вам это будет интересно Как рассчитать заземление
Важно! Прошло второе переиздание книги, в котором были отредактированы небольшие ошибки и опечатки, учтены пожелания читателей. Второе издание стало стоящим и полезным учебником для начинающих радиолюбителей
Семейства цифровых микросхем
Современные цифровые микросхемы очень разнообразны по своему функциональному назначению и электрическим параметрам, но среди этого разнообразия можно выделить два принципиально разных семейства цифровых микросхем: микросхемы семейства ТТЛ и микросхемы семейства КМОП. Давайте выясним их принципиальные различия.
Семейство ТТЛ
Цифровые микросхемы семейства ТТЛ (TTL) выполнены на основе биполярных транзисторов по транзисторно-транзисторной логике. Микросхемы семейства ТТЛ за счёт применения биполярных транзисторов обладают высоким быстродействием, но в тоже время для обеспечения высокого быстродействия необходима значительная мощность, то есть относительно большая сила тока.
Для всех ТТЛ-микросхем обычным является напряжение источника питания +5 В. Для правильной работы схемы эта величина должна оставаться в пределах 4,75…5,25 В и ни при каких обстоятельствах не должна превышать напряжения порядка 7 В. Каждый вход «стандартной» ТТЛ-микросхемы потребляет ток 40 мкА, когда на его входе поддерживается логическая 1, и отдает ток 1,6 мА при значении входного сигнала, равного логическому 0. Каждый выход логического элемента способен отдать ток величиной 400 мкА и принимать ток величиной не менее 16 мА. Поэтому к входам и выходам можно подключить до 10 логических элементов ТТЛ (говорят, что «логический элемент имеет нагрузочную способность по выходу равную 10»).
В настоящее время «стандартные» ТТЛ-микросхемы устарели, их заменили маломощные ТТЛ-микросхемы с диодами Шотки (ТТЛШ), которые потребляют в 4 раза меньшую мощность при такай же величине быстродействия, а в некоторых случаях увеличилось и быстродействие.
Сегодня в большинстве промышленных применений микросхемы типа ТТЛ и ТТЛШ заменяются КМОП-микросхемами. Однако ТТЛ-микросхемы продолжают оставаться наиболее удобными для экспериментов. Выходной ток ТТЛ-микросхем достаточен для работы светодиодов, а в некоторых случаях и для непосредственного подключения реле.
Ниже представленны типовые значения параметров различных серий ТТЛ и ТТЛШ микросхем.
Параметр | Серия микросхем | ||||
K155 | K531 | K555 | K1531 | K1533 | |
74 | 74S | 74LS | 74F | 74ALS | |
tPHL, нс | 22 | 17,5 | 15 | 5,5 | 11 |
tPLH, нс | 15 | 12 | 15 | 5,6 | 8 |
IIL, мА | -1,6 | -1,6 | -0,4 | -0,6 | -0,1 |
IIН, мА | 0,04 | 0,04 | 0,02 | 0,02 | 0,02 |
IОL, мА | 16 | 16 | 8 | 20 | 15 |
IОН, мА | -0,4 | -0,8 | -0,4 | -1 | -0,4 |
UОL, B | 0,4 | 0,2 | 0,5 | 0,3 | 0,5 |
UОН, B | 2,4 | 3,4 | 2,7 | 3,4 | 2,5 |
ICC, мА | 12 | 11 | 4,4 | 4,1 | 3 |
Семейство КМОП
Микросхемы семейства КМОП (CMOS) выполнены на основе комплементарной структуры металл-оксид-полупроводник. То есть КМОП микросхемы выполнены на полевых транзисторах, благодаря чему ток покоя данных микросхем составляет меньше 1мкА, а большое входное сопротивление исключает проблемы нагрузки, приводя к бесконечной нагрузочной способности на низких частотах. Однако при переключениях с высокой частотой (больше 10 МГц), за счёт более частого разряда емкостей, увеличивается ток, и его величина достигает таких же значений, как и у ТТЛШ-микросхем.
Изначально цифровые КМОП-микросхемы обладали большим уровнем задержки (порядка 100 нс против 10 нс у ТТЛШ), что было большим недостатком, но они обладают большой помехоустойчивостью и слабо реагируют на высокочастотные помехи. Однако на сегодня используемые технологии позволяют достигать времени задержки порядка 10 нс, что сравнивает их с ТТЛШ. Разрабатываемые и перспективные серии КМОП-микросхем в настоящее время позволяют достигать величин задержек всего в 3 – 4 нс, а также уменьшить напряжение питания вплоть до нескольких десятых долей вольта.
Ниже представленны типовые значения параметров различных серий КМОП микросхем.
Параметр | Серия микросхем | |||||
K176 | K561 | K1561 | K1554 | K1564 | K1564 | |
4000 | 4000A | 4000B | 74AC | 74HCT | 74ACT | |
tPHL, нс | 250 | 120 | 50 | 8,7 | 18 | 3,2 |
tPLH, нс | 250 | 120 | 50 | 8,7 | 18 | 3,2 |
IIL, мА | -0,0001 | -0,0001 | -0,0001 | -0,0001 | -0,0001 | -0,0001 |
IIН, мА | 0,0001 | 0,0001 | 0,0001 | 0,0001 | 0,0001 | 0,0001 |
UОL, B | 0,3 | 0,3 | 0,3 | 1,65 | 1,65 | 1,65 |
UОН, B | 8,2 | 8,2 | 8,2 | 3,9 | 3,9 | 3,9 |
ICC, мА | 0,0005 | 0,0002 | 0,0002 | 0,4 | 0,08 | 2,4 |
Теория это хорошо, но необходимо отрабатывать это всё практически ПОПРОБЫВАТЬ МОЖНО ЗДЕСЬ
Цифровые микросхемы
Цифровые ИМС — это микроэлектронные схемы, которые используются для преобразования и обработки цифровых сигналов. Цифровые сигналы получают путем дискретизации (оцифровке) аналоговых. Так, если в аналоговой форме данные о температуре любого объекта подаются непрерывным электрическим сигналом с выхода термодатчика, то цифровой сигнал — это последовательность чисел, по значению уровня температуры, измеренной через определенные промежутки времени
При этом чрезвычайно важное значение имеет форма записи чисел
В быту мы пользуемся десятичными числами. При записи такого числа используется позиционная форма представления чисел, согласно которому мы называем не самое число, а только информацию о том, сколько единиц, десятков, сотен, тысяч и т.д. оно содержит. При формировании цифровых сигналов используется двоичная система счисления. При записи двоичного числа мы отмечаем, сколько единиц, двоек, четверок, восьмерок и разрядов высокого порядка, получаемые подъемом в степень числа 2, оно содержит. Так, например, двоичное число 101 содержит одну единицу, ноль двоек и одну четверку и равное десятичному числу 5, а десятичное число 10 в двоичной форме записывается в виде: 1010 — ноль единиц, одна двойка, ноль четверок, одна восьмерка.
Нетрудно увидеть, что для представления числа в двоичной системе счисления нужно больше разрядов, чем в десятичной системе, то есть двоичное число дольше десятичное. Но двоичное число имеет то преимущество, что для его записи необходимо всего два знака — 0 и 1. Поэтому при электронной записи цифровых сигналов можно ограничиться использованием только двухуровневых сигналов. Итак, цифровой электрический сигнал — это последовательность двухуровневых элементарных сигналов 0 и 1, которые называются логическими сигналами. Для их обработки, например, дешифрации или считывания, сложения или вычитания, хранения или задержки во времени, применяют так называемые логические схемы, а в случае микроэлектронных устройств — цифровые микросхемы.
Серии цифровых микросхем
Цифровые ИМС, как и аналоговые, выпускаются сериями. Микросхемы одной серии имеют одинаковые напряжения питания, электрические и эксплуатационные параметры и при совместном использовании не требуют дополнительных согласующих элементов. Среди большого количества цифровых ИМС можно выделить следующие группы: серии функционально полного состава, серии, специализированные по функциональному назначению и микропроцессорные комплекты ИМС.
Серии первой группы включают ИМС различного функционального назначения: логические схемы, триггеры, регистры, счетчики, дешифраторы и др. Чем шире функциональный состав серии, тем в большей степени она обеспечивает выполнение требований к аппаратуре с точки зрения надежности, компактности, экономичности, технологичности, удобства эксплуатации и ремонта. Некоторые серии состоят из 100 и более типов ИМС. Примерами отечественных серий ИМС с развитым функциональным составом могут служить серии: К500, К155, К555, К176, К561, К564 и др. Такие серии можно называть универсальными с точки зрения широкого их применения.
Серии ИМС второй группы характеризуются более узкой специализацией. К ним относят серии ИМС памяти К537, К565, К556, К573, К1601 и др., Серии ИМС согласования с линиями передачи и управления устройствами (интерфейсные ИМС) К169, К170, К1102.
Серии ИМС третьей группы, которые называются микропроцессорными комплектами, включают ИМС, которые необходимы для построения микропроцессорных вычислительных и управляющих устройств. Сюда входят микропроцессоры, схемы ввода-вывода, таймеры, генераторы, различные вспомогательные ИМС. Примеры микропроцессорных комплектов: К580, К1810, К588, К1801, К1803, К1804 и др.
Презентация на тему: » Серии цифровых микросхем Функции цифровых устройств.» — Транскрипт:
1
Серии цифровых микросхем Функции цифровых устройств
2
В настоящее время выпускается огромное количество разнообразных цифровых микросхем: от простейших логических элементов до сложнейших процессоров, микроконтроллеров и специализированных БИС (Больших Интегральных Микросхем). Производством цифровых микросхем занимается множество фирм как у нас в стране, так и за рубежом
3
в качестве базиса в цифровой схемотехнике принято рассматривать классический набор микросхем малой и средней степени интеграции, в основе которого лежат ТТЛ серии семейства 74, выпускаемые уже несколько десятилетий рядом фирм, например, американской фирмой Texas Instruments (TII). Эти серии включают в себя функционально полный комплект микросхем, используя который, можно создавать самые разные цифровые устройства.
4
Система обозначений фирмы Texas Instruments
5
Каждая микросхема серий семейства 74 имеет свое обозначение, и система обозначений отечественных серий отличается от принятой за рубежом.
6
4. Идентификатор специального типа (2 символа) может отсутствовать. 5. Тип микросхемы (от двух до шести цифр). Перечень некоторых типов микросхем приведен в приложении. 6. Код типа корпуса (от одного до двух символов) может отсутствовать. Например, N пластмассовый корпус DIL (DIP), J керамический DIL (DIC), T плоский металлический.
7
Обозначения отечественных микросхем Примеры обозначений: SN74ALS373, SN74ACT7801, SN7400.
9
Корпуса цифровых микросхем Большинство микросхем имеют корпус, то есть прямоугольный контейнер (пластмассовый, керамический, металлокерамический) с металлическими выводами (ножками).
10
Корпус с двухрядным вертикальным расположением выводов, например, DIP (Dual In Line Package, Plastic) пластмассовый корпус, DIC (Dual In Line Package, Ceramic) керамический корпус. Общее название для таких корпусов DIL
11
Корпус с двухрядным плоскостным расположением выводов, например, FP (Flat-Package, Plastic) пластмассовый плоский корпус, FPC (Flat-Package, Ceramic) керамический плоский корпус. Общее название для таких корпусов Flat
12
Функции цифровых устройств Любое цифровое устройство от самого простейшего до самого сложного всегда действует по одному и тому же принципу. Оно принимает входные сигналы, выполняет их обработку, передачу, хранение и выдает выходные сигналы.
13
В качестве входных сигналов нашего устройства могут выступать сигналы с выходов других цифровых устройств, с тумблеров и клавиш или с датчиков физических величин. Причем в последнем случае, необходимо преобразование аналоговых сигналов с датчиков в потоки цифровых кодов с помощью аналого-цифровых преобразователей (АЦП). Например, в случае персонального компьютера входными сигналами являются сигналы с клавиатуры, с датчиков перемещения мыши, с микрофона (давление воздуха, то есть звук, преобразуется в аналоговый электрический сигнал, а затем в цифровые коды), из кабеля локальной сети
15
Выходные сигналы цифрового устройства могут предназначаться для подачи на другие цифровые устройства, для индикации (на экране монитора), а также для формирования физических величин. Причем в последнем случае необходимо преобразовывать потоки кодов с цифрового устройства в непрерывные (аналоговые) сигналы с помощью цифро-аналоговых преобразователей (ЦАП) и в физические величины. Например, в случае персонального компьютера выходными сигналами будут: сигналы, подаваемые компьютером на принтер; сигналы, идущие на видеомонитор (аналоговые или цифровые); звук, воспроизводимый динамиками компьютера (потоки кодов с компьютера преобразуются в аналоговый электрический сигнал, который затем преобразуется в давление воздуха звук).
16
Связь между входными и выходными сигналами может быть жесткой, неизменной или гибко изменяемой (программируемой). То есть цифровое устройство может работать по жесткому, раз и навсегда установленному алгоритму или по алгоритму программируемому. Как правило, при этом выполняется один очень простой принцип: а чем больше возможностей для изменения связи входных и выходных сигналов, чем больше возможностей изменения алгоритма работы, тем цифровое устройство будет медленнее.
17
Источники Ю.В.Новиков «Основы цифровой схемотехники» Издательство «Мир» 2001 г.
Азы электроники для чайников
Книга «Электроника для чайников» содержит сотни микросхем и фотографий, позволяющих даже самому далекому от этого дела человеку разобраться в принципах электроники. Подробнейшие советы и инструкции по проведению опытов помогут разобраться, как функционируют те или иные электронные детали. Также материал содержит рекомендации по выбору важнейших инструментов для работы в этой области и их полные описания.
Важно! По мере ознакомления с каждой главой читатель постепенно погружается в предмет, который увлекает его все больше и больше. Теоретические знания закрепляются практикой путем сборки простейших, но интересных устройств
Книга содержит следующие разделы:
- «Основы теории электрических цепей», в котором дается определение напряжению, силе тока, проводникам, рассеиваемой мощности.
- «Компоненты электросхем», где рассказывается о том, как простейшие элементы по типу резисторов, транзисторов, диодов и конденсаторов управляют током и задают его характеристики.
- «Электрические схемы универсального предназначения». Здесь будет рассказано, как использовать простейшие цифровые и аналоговые схемы в сложных устройствах.
- «Анализ электрических цепей», который познакомит с основными законами электроники и научит управлять силой тока и напряжением в электрической сети, научит применять эти закономерности на практике.
- «Техника безопасности и рекомендации по ней». Этот раздел обучит безопасной работе с электрическими цепями и током в целом, поможет защищать себя и свои приборы от поражения током.
Вам это будет интересно Определение мощности резистора
Обложка книги «Электроника для чайников»
https://youtube.com/watch?v=UqP_zfOkAwA
Формирователь импульсов
Формирователь импульсов (рис. 8) имеет высокую чувствительность [Рл 7/92-11]. При амплитуде аналогового сигнала на входе, превышающей 30 мВ, на выходе формируется сигнал прямоугольной формы с амплитудой, близкой к напряжению источника питания (9 В).
Рис. 8. Схема формирователя импульсов на цифровой микросхеме К561ЛЕ5.
Первый каскад устройства представляет собой усилитель-ограничитель импульсов. Ограничение импульсов по амплитуде происходит за счет использования включенных встречно-параллельно кремниевых диодов. Последующие каскады формируют выходной сигнал прямоугольной формы.
Литература: Шустов М.А. — Практическая схемотехника (Книга 1), 2003.